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We simulate interactions between adsorbing and nonadsorbing surfaces immersed in solutions containing
monodisperse semiflexible chains. Apart from the nature of the surfaces, we investigate responses to changes
of the intrinsic chain stiffness, the degree of polymerization, and the bulk concentration. Our simulations
display a sufficient accuracy and precision to reveal free-energy barriers that are small on a typical scale of
surface force simulations, but still of the same order as the expected van der Waals interactions. Two different
approaches have been tested: grand canonical simulations, improved by configurational-biased techniques, and
a perturbation method utilizing the isotension ensemble. We find the former to be preferable when the surfaces
are nonadsorbing, whereas the isotension approach is superior for calculations of interactions between adsorb-
ing surfaces, especially if the polymers are stiff. We also compare our simulation results with predictions from
several versions of polymer density functional theory. We find that a crucial aspect of these theories, in
quantitative terms, is that they recognize that end monomers exclude more volume to the surrounding than
inner ones do. Those theories provide satisfactorily accurate predictions, particularly when the surfaces are
nonadsorbing.
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I. INTRODUCTION

Experimentally, a lot of attention has been paid to under-
standing and characterizing the forces between surfaces im-
mersed in polymer solutions �1–6�. The ability of polymers
to stabilize or destabilize colloidal particles in solution
makes them candidates for a wide range of applications. The
surface force apparatus and atomic force microscopy are fre-
quently used to study surface forces between two closely
separated surfaces. Except for technical difficulties, a major
concern is the often slow establishment of diffusive
equilibrium—i.e., slow transfer of polymers between the in-
tersurface region and the bulk reservoir �7�.

Comparisons with simulated surface forces are rare in the
literature. Simulations also suffer from difficulties related to
bulk exchange, as dictated by the requirement of a constant
chemical potential as the surface separation is changed. The
most obvious approach in such studies is to simulate in the
grand canonical ensemble �GCE�. However, the acceptance
probability of insertion or deletion decreases rapidly with
polymer length. The polymer excess chemical potential can
be evaluated by thermodynamic integration �8�, whereby the
acceptance problem is partly circumvented, but many simu-
lations are then required. Another related approach is to
gradually build up the chain monomer by monomer and cal-
culate individual incremental contributions to the total
chemical potential �9,10�.

By using a biased sampling technique introduced by
Rosenbluth and Rosenbluth �11�, Harris and Rice �12�, as
well as Siepmann and Frenkel �13�, was able to calculate the
excess chemical potential for a polymer with discrete confor-
mations in a lattice model, using a single simulation. Subse-
quently, Frenkel et al. �14,15� and de Pablo et al. �16,17�

made analogous simulations for a continuously deformable
chain molecule. The idea of this so-called configurational-
biased Monte Carlo method is to enhance the insertion prob-
ability for a chain molecule by stepwise insertion. Starting
with monomer i, Boltzmann weights for a small number of
spatial coordinates for monomer i+1 are calculated. One of
these positions is then chosen, with a probability given by its
Boltzmann weight, to be the actual coordinate of monomer
i+1. The process is repeated until the whole chain has been
built up.

In this work we have simulated surface forces in a slit
geometry, for systems containing semi-flexible hard sphere
polymers, of various lengths �10–30 monomers/chain�. We
have focused on how the surface interactions respond to
changes of the intrinsic stiffness of the chains and �for ad-
sorbing surfaces� the bulk monomer concentration. We have
also evaluated two different simulation techniques.

The equilibrium criterion implies that the polymer chemi-
cal potential is conserved, as the surface separation is
changed. This is either accomplished by the configurational-
biased Monte Carlo method described above—i.e., by GCE
simulations—or by adopting a free-energy difference method
�FEDM�, which utilizes the isotension ensemble �IE� �18�.
This FEDM technique was introduced by Svensson and
Woodward �19,20�. Forsman and Woodward �21� subse-
quently optimized the performance of this approach by
implementing an IE version of Bennett’s rate method �22�. In
IE simulations, the area of the simulation box—i.e., the den-
sity of polymers—is regulated by an external pressure ap-
plied in the direction parallel to the surfaces. Changing the
surface-surface separation requires a mutual change in the
parallel pressure in order to keep the chemical potential con-
stant �19–21,23�. The expanded IE, implemented by
Broukhno et al. �24�, is a similar technique, although it is
based on real, rather than virtual, perturbations. A drawback
is that it lacks the considerable performance enhancement*martin.turesson@teokem.lu.se
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offered by the variance minimization procedure �21,22�.
Still, it has been successfully used to study surface forces
�24–26�.

In the presence of nonadsorbing �monomer-repelling� sur-
faces, we found the GCE approach to be preferable, at least
for the rather short chains we have investigated. When the
surfaces are strongly adsorbing, however, the GCE method
fails to provide a precision high enough to allow detection
and quantification of free-energy barriers. In those cases, the
IE technique was superior. With this approach, we are still
able to detect free-energy barriers that are remarkably small
on an absolute scale, but still relevant, in the sense that they
are comparable in magnitude to a typical van der Waals at-
traction. They would furthermore be detected in a typical
surface force apparatus �SFA� or atomic force microscopy
�AFM� experiment.

In addition to these simulation studies, we have also com-
pared a number of density functional versions, based on
Woodward’s formulation �27�. Some of these have been es-
tablished previously, while others are tested here. The differ-
ent versions are evaluated by comparing surface force pre-
dictions with our simulated data. We find that a
�quantitatively� crucial aspect in the formulation of these
density functional theories is that they recognize that end
monomers exclude more volume to the surrounding, than
inner ones do.

II. MODEL AND SIMULATIONS

The simulations are performed in two different ensembles
GCE and IE, described in more detail below. For every con-
figuration, N polymers with r monomers per chain are con-
fined between two planar infinite surfaces, separated by a
distance h, in a parallel arrangement,. The simulation box
has a side length L and a surface area S=L2. The monomers
are modeled as hard spheres of diameter �. These are con-
nected with rigid bonds, of length �, forming a pearl-
necklace polymer. This is illustrated in Fig. 1. Intrinsic chain
stiffness is introduced via a bend parameter �. The bond
angle potential between two consecutive bonds along the
chain, i and i+1, is given by

�EB�i,i + 1� = ��1 − cos �i,i+1� , �1�

where � is the angle between the bond vectors and � is the
inverse thermal energy. A positive value of � tends to stretch

the chain. The polymer configurations were sampled effi-
ciently by a combination of three different Monte Carlo
steps: translation of the whole polymer, reptation, and crank-
shaft moves. In a standard reptation step, a trial configuration
is generated by randomly choosing an end monomer and
attaching it, at any angle, to the other end of the polymer.
With a bond angle potential it is advantageous to sample the
new angle from a Boltzmann distribution, with a weight
given by the value of EB �28�. In GCE simulations, internal
configurations of chains are also sampled by the gradual
buildup of polymers, via the addition step. Periodic boundary
conditions are applied in the directions �x ,y� parallel to the
surfaces. The monomers interact with the surfaces via a soft
monomer-surface potential:

V�z,h� = w�z� + w�h − z� , �2�

where w�z� is modeled as

�w�z� = Ae−z/����

z
�6

− ��

z
�3� , �3�

where z is the distance from the left surface. The parameter A
is in this work set to 25, which results in a maximum attrac-
tion of around −1.84kT, located at approximately 1.2� from
the surface. Note that this adsorption potential decays rather
rapidly due to the presence of an exponential factor. In this
work, both attractive and repulsive monomer-surface interac-
tion potentials have been studied. The repulsive surface is
modeled by removing the attractive term on the right-hand
side of Eq. �3�.

A. Isotension ensemble

The natural thermodynamic potential for a canonical en-
semble of N polymers at temperature T confined in a slit of
separation h with a surface area S is the Helmholtz free en-
ergy A�N ,S ,T ,h�. It is an extensive function of both N and S,
which gives

A = �N − P	Sh , �4�

where � is the chemical potential and T is the temperature.
The pressure acting parallel to the surfaces, P	, is defined as

P	 = −
1

h
� �A

�S
�

T,N,h
. �5�

In isotension ensemble simulations, the surface area is
allowed to fluctuate. These fluctuations are stabilized by the
parallel pressure, which is an input parameter chosen a pri-
ori. The partition function Q is given by

Q�h,N,P	,T� =
h

�3NN!



0

�

e−�P	ShdS

�
 e�−�U�r1
1,. . .,rr

N��dr1
1, . . . ,drr

N. �6�

U is the interaction part of the Hamiltonian, which is a func-
tion of the monomer coordinates �r1

1 , . . . ,rr
N�. ri

l is the posi-
tion of the ith monomer in the lth polymer. Area fluctuations

L

σ

σ

0 h
z

L

FIG. 1. The polymers are modeled as hard spheres of diameter �
connected by rigid bonds of length � �see dashed box�. The qua-
dratic surfaces with side length L are located in z=0 and z=h.
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from S0 to S1 in the simulations are accomplished by rescal-
ing the coordinates xc.m. and yc.m. of all centers of mass of the
polymers:

�xc.m.,yc.m.� → 	�xc.m.,yc.m.� , �7�

where

	 =S1

S0
. �8�

The monomer �x-y� coordinates of each chain are then trans-
lated in the following way:

x� = x + xc.m.�	 − 1� ,

y� = y + yc.m.�	 − 1� . �9�

Changes in the area S by an amount 
S �S0–S1� are accepted
with a probability

acc�S0 → S1� = min�1,e�−�P	h
S+N ln�S1/S0�−�
U�� , �10�

where


U = U�r1
1�, . . . ,rr

N�� − U�r1
1, . . . ,rr

N� . �11�

The area fluctuations are quite time consuming, since a re-
calculation of the total energy of the system is required. In
our simulations, they constituted one percent of the total
number of Monte Carlo moves.

1. Free-energy difference method

In order conserve the chemical potential when changing
the surface separation, the ratio of the partition functions
Q�hi� and Q�hj� for any two separations hi and hj should be
unity:

Q�hi�
Q�hj�

= 1. �12�

In order to achieve this, we have employed an optimized
version of the FEDM �19,20�. The theory successfully
couples the change in separation with a proper adjustment of
the parallel pressure. By a virtual transverse scaling of the
center-of-mass coordinates �zc.m.� of system h0 and a con-
comitant translation of the monomer coordinates, the pertur-
bation energy 
U is obtained and the following energy func-
tion is sampled:

e�S,h0,h1� = �e−�
U�h0,h1��h0,S. �13�

This quantity, as well as the surface probability distribution
f�S ,h0�, can be tabulated as a discrete function of S. Equa-
tion �12� can be rewritten as

Q�h1�
Q�h0�

= �h1

h0
�N+1


0

�

f�S,h0�e�S,h0,h1�

�e�−�S�P	�h1�h1−P	�h0�h0��dS = 1. �14�

For a rigorous derivation, see Ref. �19�. Subsequent to a
simulation at a reference separation h0 with a lateral pressure

P	�h0�, Eq. �14� is solved iteratively until P	�h1� has been
found. This pressure is then used to take the next step in h.

2. Optimizing the FEDM

The FEDM only uses the information obtained by sam-
pling the h0 distribution. The accuracy of the free-energy
estimate will decrease with increasing �h1−h0� because of the
diminishing overlap between the ensembles. However, the
efficiency can be enhanced considerably by collecting data
from two overlapping ensembles �22,29�. In this work, this is
done by using an IE-adapted version of Bennett’s optimized
rate method, developed by Forsman and Woodward �30�. The
variance of the free-energy difference between two overlap-
ping ensembles is minimized, which increases the efficiency
of the simulations with about an order of magnitude. For the
present model system, employing this method is even more
crucial, since the FEDM cannot be used to predict the equi-
librium pressure at a larger separation in a model system
containing rigid bonds. The reason is that the FEDM scheme
in these cases fails to sample the complete configuration
space at the larger separation.

The starting point of optimizing the FEDM is to write a
general formula for the ratio of the partition functions at h0
and h1. Note that the configuration spaces of the two mac-
rostates at h0 and h1 are congruent because of trivial scaling
of the coordinates in the perturbation scheme:

Qh1

Qh0

=

Qh1
 
 We−��H1+H0�dqNdS

Qh0
 
 We−��H0+H1�dqNdS

=
�We−�H1�h0

�We−�H0�h1

. �15�

The weight function W=W�qN ,S� is an everywhere-finite
function of the coordinates and �Hi=��U�qN ,hi ,S�
+ P	�hi�Shi�− �N+1�ln hi. The idea is to choose the weight
function as the one that minimizes the variance of the free
energy difference, �
G=ln Qh1

− ln Qh0
. The optimal weight

is �21�

W =
c

Q�h1�e−�H0 + Q�h0�e−�H1
, �16�

where c is a constant. After insertion of the optimized ex-
pression for W in Eq. �15� and some algebraic manipulations,
we get the following expression for the quotient between
Q�H1� and Q�H0� �21�:

Q�h1�
Q�h0�

= �
0

� 

−�

�

f�S,h0��0�
U,S�F�H0 − H1 + C�d
UdS



0

� 

−�

�

f�S,h1��1�
U,S�F�H1 − H0 − C�d
UdS�
0.5

,

�17�

where F is the Fermi function, F�x�=1/ �1+ex�, and
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C = ln�Q�h1�
Q�h0�� . �18�

�0 is a conditional probability that the system at h0 has an
energy difference 
U=U�h1�−U�h0� at a given area S. By
virtual transitions from h0 to h1, we map the system at h1 and
�0�
U ,S� is being tabulated. A simulation at h1 maps the h0

system, and �1�
U ,S� is obtained.
In this work, the FEDM was used to predict the parallel

pressure at h1. Let us denote this pressure P	
0�h1�. With Ben-

nett’s method we try to find the reversible path between the
two systems by mapping the h0 system through virtual jumps
from the h1 space. The aim is to correct P	

0�h1�, obtained
from the FEDM. The corrected pressure is denoted P	�h1�.
As a consequence of the incorrect FEDM pressure obtained
at h1, also a slightly incorrect area probability density de-
noted f0�S ,h1� is sampled throughout the simulation. The
correct area probability density f�S ,h1� can nevertheless be
computed with the following perturbation expression:

f�S,h1� =
f0�S,h1�e−��P	�h1�−P	

0�h1��hS



0

�

f0�S,h1�e−��P	�h1�−P	
0�h1��hSdS

. �19�

Remembering that Q�h0� is equal to Q�h1� at equilibrium, the
constant in Eq. �17� will be zero.

If we recalculate the pressure-corrected area probability
distribution in our optimization scheme iteratively by vary-
ing P	�h1� until the right-hand side of the expression in Eq.
�17� equals 1, a near-optimal value for P	�h1� is found
�22,31�. In this paper, successive FEDM predictions of the
parallel pressure, corrected by Bennett’s method, were used
to generate the equilibrium parallel pressure as a function of
surface-surface separation. When h�i+1��h�i�, the mapping
of the h�i+1� space, using only one ensemble, is wrong for
the case with hard-sphere monomers and rigid bonds. Some
parts of the configuration space become inaccessible, and the
FEDM completely fails to work. This is not the case with
Bennett’s method, which is correct in both directions. The
results presented in this work have been obtained by stepping
upwards and downwards from a reference separation inter-
mediate to the initial and final separations. In fact, Bennett’s
method is so efficient that the FEDM is rarely needed at all.
It is sufficient to use a constant initial value of pressure as a
guess for the pressure at all separations.

3. Calculating the parallel and osmotic pressure

The surface interactions are conveniently characterized by
the free energy per unit area, gs. At equilibrium, gs is related
to the bulk pressure Pb and the parallel pressure P	 �32�:

gs = �Pb − P	�h��h . �20�

The quantity −P	h is the grand potential per unit area and is
obtained directly in an IE simulation �subsequent to the Ben-
nett correction�. From Eq. �4�, we see that the osmotic pres-
sure at equilibrium, P�, can be calculated as

P� =
d„P	�h�h…

dh
. �21�

Pb is estimated from large surface-surface separations.
The internal osmotic pressure could also be obtained from

the average force. At equilibrium, the derivative of the loga-
rithm of the IE partition function with respect to the separa-
tion is zero. Denoting the canonical configurational integral
by Z, we can write the IE partition function as

Q�h,N,P	,T� =
h

�3NN!



0

�

Z e−�P	ShdS , �22�

where

Z �
 e�−�U�r1
1,. . .,rr

N��dr1
1, . . . ,drr

N. �23�

This leads to

1

h
+

�h

N!
�
0

� � � ln Z

�h
�Z e−�P	ShdS

Q
� �24�

− �
0

�

Z S� �P	h

�h
�e−�P	ShdS

Q
� = 0. �25�

Using Eq. �21�, we can write the above expression as

P� =
�P	h

�h
=

1

�h�S�
+

�F�
�S�

, �26�

where F is the total force normal to the surfaces.

B. Grand canonical ensemble

Chemical equilibrium in an open system can also be
maintained in a grand canonical ensemble. The probability of
successful insertions or deletions of an entire chain is in the
conventional GCE very small. A method to circumvent this
problem was first introduced by Rosenbluth and Rosenbluth
in 1955 �11�. With their approach, the number of trial inser-
tions of a chain in a region of high acceptance probability is
enhanced. This bias has to be taken into account, and the
correct acceptance rule for the insertion of a chain reads

acc�N → N + 1� = min�1,WN+1
Ve��

N + 1
� . �27�

WN+1 is the Rosenbluth factor for inserting a chain. It is
determined by the following procedure: a number k of trial
insertion coordinates for the first monomer in the chain are
randomly generated in the simulation box. For each position,
the Boltzmann factor e−�Ui is calculated, where Ui is the
change of the potential energy of the system, due to a virtual
insertion of monomer i. One of the coordinates is then being
selected with a probability
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Pi =
e−�Ui

wi
, �28�

where

wi = �
j=1

k

e−�Uj . �29�

This coordinate constitute the position of the first monomer
of the trial chain conformation. The position of the next
monomer, i+1, is generated from a set of k trial coordinates
separated a bond length from monomer i. For flexible chains,
coordinates evenly distributed on a sphere centered at
�xi ,yi ,zi� would suffice. But with a bond angle potential, it is
advantageous to sample the new angle from a Boltzmann
distribution, with a weight given by the value of EB �28�; see
Eq. �1�. When the whole trial chain of r monomers has been
built up, the Rosenbluth factor is calculated:

WN+1 = �
i=1

r
wi

k
. �30�

From the Rosenbluth factor the total chemical potential �
can be calculated as

�� = − �ln WN+1 + ln� V

N + 1
�� . �31�

The procedure for deleting a chain is as follows: Choose an
existing chain in the system and calculate k−1 number of
trial positions around each monomer. The kth position is that
of the already existing monomer. Then the Rosenbluth factor
is calculated as in Eq. �30�.

The osmotic pressure in the GCE was calculated from a
virial expression similar to that in Eq. �26�, excluding the
first term, which is a consequence of the IE. To obtain free
energies from GCE results, the osmotic pressure curve was
splined and the bulk pressure was subtracted. The resulting
net pressure curve was then numerically integrated according
to Eq. �32�:

gs�h� = 

h

�

�P��h�� − Pb�dh�. �32�

At large surface separations, gs approaches twice the tension
at a single surface, s. The net surface interaction per unit
area is conveniently expressed in terms of 
gs�h��gs�h�
−2s. We define P� P�− Pb as the net osmotic pressure.

C. Density functional theory

The theory is based on Woodward’s polymer density func-
tional formalism �27�, although we shall adopt the more re-
fined versions for flexible �33� and semiflexible �34� chains,
introduced in subsequent work. We will also exploit a few
previously untested versions.

Denoting the coordinate of the ith monomer by ri, we can
write the full configuration of an r-mer as R= �r1 , . . . ,rr�.
The bond potential VB connecting neighboring monomers
will in our pearl-necklace model fulfill e−�VB�R�

��i=1
r−1���ri+1−ri �−��. It is useful to define a density distribu-

tion N�R� such that N�R�dR is the number of polymer mol-
ecules having configurations between R and R+dR. The
monomer density n�r� is obtained from n�r�=��i=1

r ��r
−ri�N�R�dR. The free-energy functional F�N�R�� is gener-
ally written as the sum of an ideal (Fid�N�R��) and an excess
(Fex�N�R��) contribution: F�N�R��=Fid�N�R��+Fex�N�R��.
The ideal part has the exact formulation: �Fid�N�R��
=�N�R��ln�N�R��−1�dR+��N�R��VB�R�+Vex�R��dR,
where Vex�R� is an external potential, in our case emanating
from the surfaces.

Contrary to Fid�N�R��, Fex has to be approximated. We
have investigated several different formulations, which can
be partitioned in three separate groups. With formulations of
the first kind, the excess contribution has the following struc-
ture:

Fex�n�r�� =
 n�r�f�n̄�dr , �33�

where n̄ is a coarse-grained density, while f�n� is the excess
free energy per monomer in a bulk solution with a monomer
density n. The use of coarse-grained, or weighted, densities
was introduced by Nordholm and co-workers �35�. It allows
treatment of nonlocal excluded volume effects. There are
several different recipes for the evaluation of n̄�r�, with the
common strategy that it is expressed in terms of weighted
contributions from local densities in the vicinity of r:

n̄�r� =
 n�r��w��r − r���dr�. �34�

Sometimes the weighted density is expressed as a sum of
such integrals. In most cases, we shall adopt the original
recipe, proposed by Nordholm et al.:

w�r� =
3

4��3��� − r� , �35�

where ��x� is the Heaviside step function,

��x� = �1, x � 0,

0, x � 0.

As we shall see, comparisons with results using a more
elaborate version proposed by Tarazona and Evans �36�, sug-
gest that the specific choice of weighting has little influence
on the investigated surface interactions. The excess free en-
ergy per monomer, f�n�, is conveniently obtained by integra-
tion of a polymer equation of state �EOS�. Again, there are
several different alternatives, and we will compare the fol-
lowing versions.

�i� The “Chiew” EOS, suggested by Chiew �37�.
�ii� The “Song” EOS, where Song et al. �38� modified the

Chiew EOS so as to utilize the Boublik-Mansoori-Carnahan-
Starling-Leland �BMCSL� �39,40�, rather than the Percus-
Yevick �41� expression for the contact value of the radial
distribution function.
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�iii� The thermodynamic perturbation theory EOS,
“TPT1,” proposed by Wertheim �42�. Actually, we will adopt
a slightly refined version �43�, utilizing the BMCLS expres-
sion.

Integrating the Chiew EOS for a pure polymer fluid, or a
polymer solution with an implicit solvent �the Mcmillan-
Mayer approach�, leads to

�fChiew�n� =
3�

1 − �
�1 +

�

2�1 − ��� −
3�r − 1��
2r�1 − ��

−
1

r
ln�1 − �� ,

�36�

where �=�n�3 /6. Corresponding expressions are

�fSong�n� =
�

1 − �
�3 +

1

1 − �
� −

�r − 1��
4r�1 − ���6 +

�

1 − �
�

+ �1 −
1

r
�ln�1 − �� �37�

for the Song EOS and

�fTPT1�n� =
�

1 − �
�3 +

1

1 − �
� +

1 − r

r

�ln� 1

1 − �
+

3�

�1 − ��2 +
�2

2�1 − ��3� �38�

for the TPT1 EOS.
The second category of functionals we will investigate

differs from the above in one, as we shall demonstrate, quan-
titatively important aspect. They recognize that end mono-
mers exclude more volume to the surrounding than “inner”
ones do and are derived from a dimer fluid reference. The
excess part of the functional can in these cases be written

Fex�n�r�� =
 nc�r�fc�n̄�dr +
 ne�r�fe�n̄�dr , �39�

where ne�r� is the density of end monomers, while nc�r�
=n�r�−ne�r� is the density of all inner monomers. Two for-
mulations below to this group: the generalized-Flory dimer
�GFD� and the TPTD1. We start by a recapitulation of the
GFD functional, which is based on an equation of state pro-
posed by Honnell and Hall �44�. By integrating this EOS,
Woodward and Yethiraj �33� obtained the following expres-
sion:

�fGFD�n� =
r − 2

r

ve�r� − ve�2�
ve�2� − ve�1�

�a2�n� − a1�n�� +
a2�n�

r
,

�40�

where ve�r� is the volume that an r-mer excludes from its
surrounding �45�. We have used the approximations sug-
gested by Wichert et al. �46�. Specifically, ve�1�=4��3 /3,
ve�2�=9�3� /4, and ve�3��9.83�3. For r�3, they used the
approximation

ve�r� = ve�3� + �r − 3��ve�3� − ve�2�� − 0.04915�3�r − 3�1.09,

�41�

where the last term is an empirically determined correction.
For a pure polymer fluid, the expressions for ai simplifies to
�34�

a1�n� =
1

1 − �
�2 +

1

1 − �
� − 3 �42�

and

a2�n� =
5

4
ln�1 − �� +

9

4�1 − ���1 +
1

1 − �
� −

9

2
. �43�

The GFD version of Eq. �39� reads

�Fex�n�r��GFD =
1

r − 2

 nc�r�

ve�r� − ve�2�
ve�2� − ve�1�

�a2„n̄�r�…

− a1„n̄�r�…�dr +
1

2

 ne�r�a2„n̄�r�…dr .

�44�

We shall later see that a separate treatment of end monomer
volume exclusion improves the accuracy of predicted surface
interactions quite considerably. The “end effect” is further-
more significant for surprisingly high degrees of polymeriza-
tions. In order to facilitate direct comparisons with a corre-
sponding approach in which the all monomers are treated
equally, we will sometimes include predictions from the
GFD functional one obtains if the approach suggested in Eq.
�33� is used:

�Fex�n�r��GFD-AME =
1

r

 n�r�

ve�r� − ve�2�
ve�2� − ve�1�

�a2„n̄�r�…

− a1„n̄�r�…�dr +
1

r

 n�r�a2„n̄�r�…dr ,

�45�

where the index “AME” signifies an “all monomers equal”
excluded volume treatment.

The second EOS in the category that uses a dimer refer-
ence fluid is the TPTD1, derived by Chang and Sandler �47�.
An integration leads to

�fTPTD1�n� =
�

�1 − ��2 �4 − 3�� − ln� 1 − 1
2�

�1 − ��3�
−

1 − 2/r

2
ln� 1

2
+ �

�1 − ��2� , �46�

suggesting that the corresponding excess functional
Fex�n�r��TPTD1 can be written in the form given by Eq. �39�,
with
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fc�n� =
�

�1 − ��2 �4 − 3�� − ln� 1 −
1

2
�

�1 − ��3� −
1

2
ln� 1

2
+ �

�1 − ��2�
�47�

and

fe�n� =
�

�1 − ��2 �4 − 3�� − ln� 1 −
1

2
�

�1 − ��3� . �48�

In other words, this functional also takes into account that
end monomers exclude more volume than central ones do. A
corresponding functional, in which all monomers are treated
equally, can be constructed in the same manner as we did
with the GFD. It serves as a useful reference and will be
denoted TPTD1-AME.

The last of our tested functionals in this work belongs to a
third category. It is fundamentally different from the other
functionals, since it does not rely on an EOS, or at least not
an “ordinary” one. Instead, the functional is based on what
we call the “locally incompressible fluid” approach �LIF�. It
is essentially a continuum version of the Scheutjens-Fleer
theory �48� and was first introduced by Forsman et al. �49�.
The main assumption is that the fluid, including the solvent,
is locally incompressible. This is formulated by the follow-
ing constraint: ns�z�+n�z�=n0, where n0 is the fixed total
density, while ns is the density of an implicit solvent. Hence,
in analogy with the Flory-Huggins, or Scheutjens-Fleer,
theories, the solvent merely “fill up” empty space. This local
incompressibility constraint implies that we impose an ex-
cess free energy that is constant as long as the constraint is
fulfilled and infinite otherwise. In accordance with the lattice
theory of Scheutjens and Fleer, we shall let n0 correspond to
cubic close packing—i.e., n0�3=1. It should be pointed out
that predictions by this functional hardly can be expected to
agree quantitatively with continuum simulations, since the
latter implicitly assumes global incompressibility �via
McMillan-Mayer theory, connecting osmotic pressure with
solvent chemical potential�.

Having chosen a suitable approximation for Fex, the
grand potential �=−P	h is obtained from

��N�R�� = Fid�N�R�� + Fex�N�R�� − �p
 N�R�dR ,

�49�

where �p is the bulk polymer chemical potential. The inter-
action free energy per unit area, gs�h�, is given by gs�h�
=�eq /S+ Pbh where �eq is the equilibrium grand potential
and S is the surface area. The functional is simplified by
integration over the �x ,y� plane parallel to the surfaces; i.e.,
we neglect lateral heterogeneities �50�.

With the LIF approach, we get

���N�R�� = �Fid�N�R�� +
 �n0 − n�z���ln�n0 − n�z��

− 1�dz + �Fex +
 ��Vex�z� − �p�n�z�dz

−
 ��s�n0 − n�z��dz , �50�

where Fex is a functional of the local total density and �s is
the chemical potential of the solvent. Remember that the
total density is constrained to be constant; i.e., Fex is con-
stant. Hence, the free energy can be considered a functional
of the monomer density only and thus describes an effective
one-component polymer fluid. Note also that it is implicitly
assumed that the external potential Vex acts on the monomers
only, since only “excess” quantities matter in a local incom-
pressibility approach. The solvent particles are confined by
an imaginary hard wall, which we have located 0.75� from
the surface, which is close enough for the monomer density
to have decayed to an insignificant value.

1. Semiflexible polymers

As mentioned previously, semiflexible chains are modeled
via a “stiffness potential” EB. With si denoting the bond vec-
tor between monomers i and i+1, we can rewrite Eq. �1� as
�EB=��1−

si·si+1

�2
�. A more intuitive feeling for the role played

by the stiffness parameter � is obtained by noting that, if we
neglect hard-core effects, the polymer persistence length �p
= �Ree ·s1 /�� is given by

�p/� =
��1 − e−2��

1 − e−2��1 + 2��
, �51�

where Ree is the position vector between the end monomers.
Thus, even for moderate values of �, �p /���. Integrating
the Boltzmann factor exp�−�EB� across the �x ,y� plane leads
to

��
zi,
zi+1� = e��1−
zi
zi+1/�2�I0���1 − �
zi

�
�2�1/2

��1 − �
zi+1

�
�2�1/2� , �52�

where I0�x�= 1
2��0

2�exp�−x cos ��d� is a modified Bessel
function and 
zi�zi+1−zi. Minimizing the free-energy func-
tional for semiflexible chains of hard-sphere monomers con-
fined by surfaces gives the following expression for the equi-
librium monomer density profile:

n�z� = e��p�
i=1

r 

0

h

��z − zi��
j=1

r

e−��zj��
k=1

r−1

���
zk� − ��

��
l=1

r−2

��
zl,
zl+1�dz1 ¯ dzr, �53�

where ��z�=���Fex /�n�z�+Vex�z��. In order to simplify the
notation, we here have assumed that Fex does not discrimi-
nate between end monomers and central ones. The generali-
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zation to such cases is straightforward. Equation �53� is eas-
ily solved by iteration using a propagator approach.

III. RESULTS

A. Repulsive surfaces

Results for polymers confined between monomer repel-
ling surfaces were obtained using GCE simulations. The
choice of simulation ensemble �GCE or IE� depends on the
accuracy with which the osmotic pressure in the slit can be
determined. In the case with repulsive surfaces, we found
that GCE simulations are preferable, at least for such short
chains. GCE simulations have the added advantage that sur-
face force computations can be trivially “parallelized.” In
Fig. 2�a� we display the net osmotic pressure at various sur-
face separations, as obtained in the presence of flexible
chains. The bulk monomer density was set to nb�3=0.1 by
calculating the polymer chemical potential �see Eq. �31�� in a
separate bulk simulation. The trend is clear: longer chains
generate a more long-ranged repulsive osmotic pressure.
Note also the slightly oscillatory behavior observed with the
shortest chains. A comparison with an IE simulation for r
=10 is included in Fig. 2. As expected the two approaches
agree well. In Fig. 2�b�, the corresponding free-energy inter-
action is presented together with a typical van der Waals

�vdW� interaction, choosing a Hamaker constant of 10−20 J.
We see that the sum of the vdW interaction and the polymer-
mediated interactions is negative for most separations; i.e.,
no significant stabilization is created from a solution of flex-
ible polymers, at this particular bulk monomer density.

Figures 3�a� and 3�b� show net osmotic pressures and free
energies, respectively, as a function of separation in the pres-
ence of semiflexible polymers, �=6. The range of surface-
surface interactions increases with the intrinsic rigidity of the
dissolved chains. For �=6, this leads to the development of a
free-energy barrier exceeding our reference vdW attraction.
This is an demonstration of the experimentally well-
established phenomenon called “depletion stabilization.”

B. Attractive surfaces

Forces between adsorbing surfaces were investigated with
IE simulations. The precision obtained from GCE simula-
tions was insufficient, especially with stiff chains. It is also
worth noting that a considerably higher precision of the os-
motic pressure was obtained with Eq. �21�, as compared to
the virial expression in Eq. �26�. The osmotic pressure was
therefore calculated using Eq. �21�, and the free-energy
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FIG. 2. �Color online� �a� Net osmotic pressure curves as a
function of separation in solutions containing flexible polymers ��
=0� of various chain lengths. The surfaces are repulsive, and
nb�3=0.1. �b� Free energy of interaction per unit surface area for
the system in �a�, obtained as described in the text above. The
dashed line corresponds to a van der Waals interaction with a Ha-
maker constant of 10−20 J.
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FIG. 3. �a� Net osmotic pressure curves as a function of separa-
tion in the presence of semiflexible polymers ��=6� of various
chain lengths. The surfaces are repulsive, and nb�3=0.1. �b� Free
energy of interaction per unit surface area for the system in graph
�a�.
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curves were constructed with Eq. �20�. In Fig. 4, we explic-
itly compare the IE and GCE approaches for a system con-
taining ideal semi-flexible polymers �r=10 and �=14�. To
summarize, the problem with the GCE is twofold: First, it is
difficult, even with the weighting scheme, to find attractive
configurations. This is particularly difficult for stiff chains
with hard cores, but the problem as such is general. Second,
it becomes very CPU demanding �long simulations� to deter-
mine the monomer-wall pressure with satisfactory accuracy,
when the surfaces are strongly adsorbing.

The total CPU time spent to span a given separation re-
gime is roughly the same with both approaches. The IE
simulations perform considerably better than the GCE simu-
lations. This is particularly evident from the free-energy
curves in Fig. 4�b�, where the IE results are closer to the
exact solution. In fact, the GCE results can differ from the
exact curve with as much as 50%. Two different system sizes
�40 and 100 polymers� were simulated in the IE. The number
of chains in the GCE fluctuated around 40. In graph 4�b�, we
see that there is a significant size dependence. However, size
effects are not nearly as pronounced in a system of interact-
ing chains. This is obvious from the results displayed in Fig.
5, where we compare results from simulations using 16 and
36 hard-sphere polymers, respectively. Because of the small
observed differences in these systems, we decided to carry
out most simulations with 24 chains.

In Fig. 6, we show surface interactions at three different
bulk monomer densities. The chains are semiflexible with �
=11. The average end-to-end distance is about 90% of the

maximum value. Such stiff chains adsorb very strongly, al-
most saturating the surfaces, and the interaction between the
surfaces is then mainly governed by the remaining free
chains. At higher concentrations, a depletion interaction
dominates at long range. This is caused by nonadsorbed
chains being expelled from the slit as the separation is re-
duced. At such high concentrations, the surfaces are even
more saturated by adsorbed chains. This tends to increase the
influence of “free” polymers on the surface force �51,52�. At
shorter separations, all three curves display a free-energy
barrier. This barrier is caused by overlap between the outer
parts of the adsorbed layers. At even shorter distances bridg-
ing attraction is prevalent and brings the surfaces together. At
very short distances a strong repulsive interaction due to
overlap between the adsorbed layers determines the overall
shape of the interaction curves �not shown�.

The inset of Fig. 6�a� highlights the problem of using the
virial expression, Eq. �26�, to determine the osmotic pres-
sure. The noise reduces substantially when Eq. �21� is used
instead. In order to obtain a free-energy curve that resolves
both depletion attraction and the repulsive barrier, we had to
use the IE approach. In fact, the GCE method, where the
pressure must be evaluated with Eq. �26�, can give qualita-
tively wrong results for stiff chains and strong adsorption
potentials. The acceptance of inserting and deleting a chain
near the surfaces is very low in these cases. Furthermore,
even in a canonical simulation, the osmotic pressure is diffi-
cult to measure with the virial equation. In summary, the
GCE approach suffers from two problems when the chains
are stiff and the surfaces are strongly adsorbing: it is compu-
tationally demanding to establish the equilibrium density,
and the osmotic pressure is poorly estimated with the virial
equation. These problems are avoided in the IE with its fixed
number of chains and the possibility to use the superior
equation �21� to calculate the osmotic pressure.

The effect of varying the intrinsic chain stiffness at differ-
ent bulk densities is illustrated in Fig. 7. Bulk monomer den-
sities were estimated from the osmotic pressures at large
separations. A typical vdW interaction has been added to
each graph. Fig. 7�a� shows the cases �=8 and 11 at nb�3

=0.029 and 0.028, respectively. Increasing the stiffness
makes the repulsive interaction stronger and more long
ranged, implying the possibility of a stronger colloid disper-
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FIG. 4. Interactions between surfaces immersed in a solution of
ideal semiflexible decamers, with �=14. Results using the GCE and
IE approaches, respectively, are displayed. �a� Net osmotic pres-
sures. �b� Net interaction free energies.
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sion stabilization. In Fig. 7�b�, the response of surface inter-
actions to changes of the intrinsic polymer stiffness is shown,
at a roughly constant bulk monomer density. Interestingly,
the interaction is not a monotonic function of the stiffness.
Starting from the fully flexible chain, stiffening it to �=4,
renders the barrier higher and more long ranged. Increasing it
further, to �=11, shifts the position of the maximum of the
barrier to a shorter separation. At the same time, a long-
ranged attractive regime starts to form. Increasing the stiff-
ness even further, to �=14, almost completely removes the
repulsive barrier. Instead the long-ranged attractive depletion
regime dominates. In the extreme limit that the chain is an
infinitely stiff rod, the barrier at short range is replaced by a
weaker, but more long-ranged, one �52�. The increased range
of the depletion interaction for the stiffest chains is related to
surface saturation effects, combined with an increased radius
of gyration. The probability for stiff chains, stretching out in

the solution between the surfaces, is small, due to high co-
operativity of monomer adsorption. The surface becomes
nearly saturated with polymers, and the depletion interaction
dominates at large separations. These saturation effects are
more pronounced at higher monomer concentrations, as il-
lustrated in Fig. 7�c�.

Extremely stiff chains with a rodlike rigidity are known to
display orientational ordering at adsorbing surfaces. We have
not found any clear transition to ordered phases at the sur-
faces, but the stiffest athermal chains do display a slight
orientational ordering at the surfaces. As was discussed more
thoroughly in a previous publication �52�, this ordering actu-
ally has little influence on the surface interactions.

Figure 8 shows two of the curves in Fig. 7�b� on a differ-
ent scale, highlighting the remarkable precision of the simu-
lated free-energy barriers. Simulation results of surface inter-
actions are typically displayed on a scale similar to that
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FIG. 6. �a� Net osmotic pressures obtained from Eq. �21� for
three various bulk monomer densities of a 20-mer with �=11.
nb�3=0.028 �long-dashed line�, nb�3=0.031 �dashed line�, and
nb�3=0.040 �solid line�. The squares in the inset show the pressure
calculated using the virial equation �Eq. �26�� for nb�3=0.040. The
surfaces are attractive. �b� Net free energy of interaction per surface
area for the system in graph �a�.
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given in the main graph of Fig. 8. Here, the barrier found
with the less rigid chains is not discernable. In fact, on this
scale, the GCE approach is probably satisfactory �not
checked�. Note, however, that even if the barrier is small on
this scale, it is still comparable to a typical van der Waals
attraction and also comparable to surface forces typically
measured with SFA or AFM instruments. The inset displays a
magnified portion of the graph, where we see how the accu-
racy and precision of the IE+Bennett approach permits us to
evaluate the role of intrinsic chain stiffness. Strong bridging
attractions completely dominate at separations between 2�
and 3.5�. At about 3.5� there is a small bump in the free
energy, which originates from steric restrictions of the con-
fined chains in the slit.

We conclude this section by presenting, in Fig. 9, simu-
lated �IE� interactions between strongly adsorbing surfaces,
mediated by flexible and semiflexible 30-mers. When the
intrinsic stiffness of the dissolved chains increases from flex-
ible to moderately stiff, the free-energy barrier becomes
larger, in agreement with what we have seen for shorter
chains. The simulated time per point for the stiff polymer in
Fig. 9 was about 7.5 h. With 160 points, the total CPU time
amounts to about 50 days. Nevertheless, corresponding GCE
simulations would require a substantially increased compu-
tational effort and would in practice be almost impossible to
run.

IV. DENSITY FUNCTIONAL THEORY RESULTS

A. Repulsive surfaces

We start by evaluating the GFD, TPTD1, and TPT1 ap-
proaches by comparing predictions with simulation data of
interactions between repulsive surfaces. Such comparisons
are given in Fig. 10. We see that the GFD and TPTD1 pre-
dictions are superior, although the TPT1 also performs rea-
sonably satisfactorily. Between the two former versions, the
GFD is slightly more accurate in the presence of 10-mers and
20-mers, while it underestimates the barrier more than the
TPTD1 does, when the degree of polymerization is 30. The
TPTD1 calculations display a somewhat too long-ranged
depletion attraction, but the discrepancy is small. The accu-
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FIG. 8. Two of the curves in Fig. 7�b� �� � 11 and 14�, together
with a typical vdW interaction. The inset is a magnification around
6� and reveals the relevant free-energy barriers.
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FIG. 10. �Color online� Comparisons between density functional
predictions and simulated data of the interaction between repulsive
surfaces in the presence of semiflexible ��=6� hard-sphere poly-
mers at a bulk monomer density of nb�3=0.1. �a� 10-mers. �b�
20-mers. In this case, predictions by the locally incompressible fluid
approach �LIF�, are also included. �c� 30-mers.
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racy of all approaches seems to deteriorate somewhat with
chain length, although we should remember that the same
statement presumably is true for the simulation data. We also
noticed in Fig. 4 that the free-energy curves are much more
sensitive to small deviations from the exact results than the
corresponding osmotic pressure data are.

Finally, we have included predictions by the LIF func-
tional in Fig. 10�b�. As mentioned earlier, these predictions
are primarily included to give an indication of differences
between a locally incompressible �lattice� and globally in-
compressible �continuum� polymer solution model. The two
approaches display the same qualitative features of the sur-
face interaction �“depletion stabilisation”� and even a reason-
able quantitative agreement. In graph �c�, we also display the
interactions on a larger scale, on which the barriers are un-
detectable.

One might, at this stage, be inclined to believe that our
simplistic choice of weight function for the coarse-grained
density is a primary source of error in the density functional
theory �DFT� calculations. However, at these low monomer
densities, very similar results will be obtained irrespective of
the choice of weight functions. A specific illustration will be
provided in the next subsection.

B. Attractive surfaces

Density functional predictions of interaction free energies
between adsorbing surfaces appear to be considerably more
difficult than when these are nonadsorbing. Comparisons
with simulation results are given in Fig. 11. Here, predictions
by all our investigated versions of DFT are evaluated, includ-
ing the GFD using the coarse-graining weight function sug-
gested by Tarazona and Evans �36�. There are several things
to be noted.

�i� The Chiew, Song, and TPT1 predictions essentially
coincide. The agreement between them is in fact quite re-
markable. Common to all of these is the neglect of specific
end monomer excluded volume effects; i.e., they belong to
our first category of functionals, with a structure given by
Eq. �33�.

�ii� The GFD and TPTD1 completely outperform their
competitors. They still underestimate the free energy barrier
by a factor of 1.2–1.8, but for the other versions this factor is
in the range of 4–6. We saw earlier that there are some size
dependence effects in the simulations, which may generate
an overestimation of the barrier, but only slightly so.

�iii� The TPTD1 provides the best predictions of barrier
heights, but also produces a somewhat too long-ranged re-
pulsive tail.

�iv� The DFT calculations are rather insensitive to the
choice of smoothing density weight functions. This is pre-
sumably because the average monomer density is relatively
low.

�v� The LIF functional �“lattice approach”� predicts a
rather different behavior. Strictly speaking, it does predict a
barrier, but it is hardly even noticeable on this scale and
occurs at much too large separations. Given that we have
highlighted these differences observed between continuum
and lattice approaches, we did not include the LIF predic-
tions in graph �b�.

Then, why do the GFD and TPTD1 perform so much
better than the other investigated versions? It turns out that
they do so because they take into account the extra volume
that the end monomers exclude to the surrounding; i.e., they
belong to our second category of functionals, Eq. �39�. This
is highlighted in Fig. 12, where GFD and TPTD1 predictions
are compared with those obtained when the separate treat-
ment of end monomers is excluded—i.e., the GFD-AME and
TPTD1-AME versions. The end effect is quite clear and is
particularly strong for TPTD1. There is a close agreement
between the GFD-AME and TPT1 data, while the GFD pre-
dicts a substantially stronger barrier. The results in graph �b�
are especially remarkable, since we find that the end effect is
significant, even when each chain contains hundreds of
monomers. We also note that while the TPTD1, as expected,
predicts the highest free-energy barrier in the presence of
30-mers, the value of this quantity is essentially identical
between GFD and TPTD1 when the chains are longer �r
=200�. The TPTD1 does, however, still predict a more long-
ranged repulsive tail. Our simulation results on shorter
chains imply that the GFD predictions are more accurate in
this regime. Taking the extra volume excluded by end mono-
mers into account will, at strongly adsorbing surfaces, tend
to push these monomers farther away from the surfaces than
in corresponding models where this extra excluded volume is
disregarded �not shown�. This will in turn lead to a stronger
excluded volume repulsion at the midplane between the sur-
faces, thus generating a more repulsive barrier.

The Song, Chiew, and TPT1 equations of states could, in
a rather trivial manner, be used to formulate functionals of
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FIG. 11. �Color online� Comparisons between simulation results
and density functional predictions of forces between attractive sur-
faces in the presence of semiflexible hard-sphere polymers. �a� 20-
mers, �=8, nb�3=0.029. �b� 30-mers, �=6, nb�3=0.022.
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the form given by Eq. �39�. This is easily achieved by sepa-
rately extracting the respective predictions of the excess free
energy per monomer for a dimer fluid. However, given their
formal structure, using the monomer fluid as a reference,
such a procedure is rather artificial. Still, our results suggest
that it might lead to improved functionals.

We end with two figures summarizing our major findings
regarding the influence of monomer concentration and intrin-
sic chain stiffness, on the interaction between adsorbing sur-
faces. The DFT qualitatively reproduces the response ob-
served in simulations. It has also the advantage of
computational speed and an exact knowledge of the bulk
monomer density. This allows us to present a clearer and
more condensed picture of the observed effects.

In Fig. 13, we have maintained the intrinsic chain stiff-
ness, while we change the bulk monomer concentration. We
see how the barrier at low concentrations, due to overlap
between tails of adsorbed chains, initially increases with den-
sity. Finally, the interaction becomes attractive as a conse-
quence of surface saturation and the concurrent depletion of
nonadsorbed chains.

Another option is to maintain a constant bulk monomer
concentration and monitor how the surface interactions re-
spond to changes of chain rigidity. This is illustrated in Fig.

14. An additional advantage with the DFT approach is that it
is easy, and computationally cheap, to include the solvent
explicitly. In Fig. 14�b�, we provide corresponding surface
interactions in the presence of a hard-sphere solvent, where
the solvent particles have the same diameter as the mono-
mers. We assume that the surfaces have no solvent affinity;
i.e., the solvent particles only sense the repulsive part of the
surface potential. It is gratifying to find that the qualitative
behavior we find in our implicit solvent model is preserved

0 10 20 30
h/σ

−0.002

0

0.002

0.004

β∆
g

sσ
2

GFD
GFD_AME
TPT1
TPTD1
TPTD1−AME
vdW

r = 30, ε = 8

nbσ3 = 0.04

0 20 40 60
h/σ

−0.001

0

0.001

0.002

β∆
g

sσ
2

GFD
GFD_AME
TPT1
TPTD1
TPTD1−AME

r = 200, ε = 8

nbσ3 = 0.04

(a)

(b)

FIG. 12. �Color online� Comparing DFT approaches employing
Eqs. �33� and Eq. �39� for the excess part of the free-energy func-
tional. The former does not discriminate between monomers,
whereas the second takes into account that end monomers exclude
more volume than the others. TPT1, GFD-AME, and TPTD1-AME
belong to the first category, while TPTD1 and GFD belong to the
second. The surfaces are attractive, the stiffness parameter is �=8,
and the bulk monomer density is nb�3=0.04. �a� 30-mers. �b�
200-mers.
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FIG. 13. A summary of the qualitative response of the interac-
tion between adsorbing surfaces to changes of the bulk monomer
concentration. The solution contains semiflexible 30-mers, with �
=8.
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when the solvent is treated explicitly, at least if it enters in
the described manner. Quantitatively, we do observe a sig-
nificantly stronger free-energy barrier with the explicit sol-
vent model.

V. CONCLUSIONS

We have successfully simulated interactions between sur-
faces, either adsorbing or nonadsorbing, immersed in poly-
mer solutions containing semiflexible hard-sphere chains. A
McMillan-Mayer approach was adopted; i.e., the solvent was
not included explicitly. Both the grand canonical ensemble
and the isotension ensemble, coupled with perturbation tech-
niques, have been utilized and compared. We found the
grand canonical ensemble to be preferable when the surface
are nonadsorbing. In the case of strongly adsorbing surfaces
and stiff polymers, however, that approach fails almost com-
pletely. In those cases, and if high precision and accuracy is
desired, the isotension ensemble method is the only viable
option. The GCE approach is probably acceptable, if one
settles with the overall appearance of the surface force curve,
including the strong attraction at short range �cf. Fig. 8�, and
refrains from attempting to quantify free-energy barriers.

Switching focus to the investigated surface interactions,
we have found a strong influence from the intrinsic rigidity
of the dissolved polymers. Increasing the intramolecular
chain stiffness from fully flexible to moderately stiff chains
leads to an increased free energy barrier. This qualitative
response is found for attractive as well as repulsive surfaces.
Interactions between strongly adsorbing surfaces were more
closely investigated. Here, we found that a further increased
stiffness, to very rigid chains, leads to a diminished free-
energy barrier and even a long-ranged attraction. This is due
to the surfaces being saturated by a strong adsorption of rigid

chains. The attraction at long range is thus caused by the
depletion of nonadsorbed chains.

Finally, we made rather extensive comparisons with vari-
ous versions of Woodward’s polymer density functional
theory. These versions differ by the approximate way in
which excluded volume interactions are taken into account.
In our case, the excess free energy per monomer is �with one
exception� derived by integration of a polymer fluid equation
of state. Two such equations of state uses a dimer fluid as
“reference,” which in a natural way leads to a separate de-
scription of the �larger� volume excluded by the end mono-
mers in a chain. By comparing surface force predictions with
corresponding simulation data, we established that these
equations of state, the GFD and TPTD1, are superior to the
others, at least for the model systems investigated. We also
found that a separate treatment of the end monomer excluded
volume has substantial effects on the predicted surface
forces, even when each dissolved polymer contains hundreds
of monomers. Other equations of state that use a monomer
reference fluid could in principle also be described by func-
tionals treating the end monomers specifically. However, this
approach is in those cases somewhat artificial. At any rate,
the performances of the GFD and TPTD1 functionals are
comparable, with an almost quantitative accuracy when the
surfaces are non-adsorbing. The accuracy is poorer for
strongly adsorbing surfaces, but is still reasonable. Simulated
responses of the surface interactions to changes of the vari-
ous investigated system parameters are qualitatively repro-
duced by virtually all the density functional versions we have
studied. A possible exception is the density functional analog
of the Sheutjens-Fleer theory, adopting a locally incompress-
ible polymer solution model. In this case, the barriers are
predicted to be considerably weaker and located at much
larger separations.
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